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Abstract20

Geolocation is increasingly employed to reconstruct the movements of demersal fishes using data retrieved21

from electronic archival tags. However, geolocation methods commonly suffer from limitations such as22

low horizontal resolution of locations, flawed land boundary treatment, and extensive computation time.23

We addressed these issues using a state-space approach based on the particle filter (PF), and developed a24

geolocation package with graphics processing unit (GPU) acceleration. Our method focused on application to25

demersal fish and utilizes comparison of the tag-recorded depth and temperature to the same variables from26

an unstructured grid regional oceanographic model. A rigorous boundary treatment scheme was implemented27

to handle regions with complex coastline geometry. Validation exercises using stationary mooring tags and28

double-electronic-tagged (archival and acoustic tags) Atlantic cod in the Gulf of Maine resulted in <1029

km median errors of the estimated tracks. Sensitivity analyses suggest that using 200,000 particles was30

adequate to stabilize the location track estimation. Acceleration of the particle filter using GPUs resulted31

in faster processing than the single threaded CPU (central processing unit) implementation, enabling rapid32

geolocations using consumer grade computer hardware. The geolocation output of each tagged fish includes33

the most probable track and the associated spatial probability distribution. The resulting PF geolocation34

package enables high resolution and accelerated geolocation analyses to be performed on affordable consumer-35

grade computer hardware, resolving the time intensiveness problem of the PF that may have prevented36

its adoptions in marine animal geolocation. Expanded application of geolocation will yield more reliable37

migration information to support management. Geolocation results from archival tagging will contribute to38

our understanding of the spatial ecology of marine species.39

1 Introduction40

Electronic tagging has offered improved fishery-independent insights into behavior and population structure41

of marine species (Galuardi and Lam, 2014; Hussey et al., 2015). Two commonly employed variants of42

electronic archival tags are data storage tags (DSTs) and pop-up satellite archival tags (PSATs). These are43

relatively compact devices that can be attached to a fish and are capable of recording key environmental44
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data such as pressure (i.e., depth), light level, and temperature at precise time intervals, typically seconds to45

minutes. These data may be used to estimate locations and possible migration paths of the tagged individual46

through geolocation. The majority of geolocation methods for tracking individual aquatic animals use GPS47

and light level (Galuardi and Lam, 2014). However, due to attenuation in the water column, these signals48

are not suitable for geolocation of demersal species that reside at depth on or near the bottom of the water49

column. For demersal fish, geolocation using tag-recorded depth and temperature data is a more appropriate50

approach and has been incorporated into several methods, including Metcalfe and Arnold (1997); Hunter51

et al. (2003); Andersen et al. (2007); Righton and Mills (2008); Pedersen et al. (2008). Many of these prior52

approaches are based on state-space models that account for uncertainties related to the observations and53

the estimated quantities (Pedersen et al., 2008; Thygesen et al., 2009; Patterson et al., 2008; Jonsen et al.,54

2013).55

The particle filter (PF), also known as sequential importance resampling or sequential Monte Carlo, is56

a statistical method that is commonly applied to tracking applications in fields such as robotics and image57

processing (Gustafsson et al., 2002). The PF has also been employed for fish geolocation using archival58

tagging data (Nielsen, 2004; Royer et al., 2005; Andersen et al., 2007; Brickman and Thorsteinsson, 2008;59

Coleman, 2015), where the possible geographic location of the fish is modeled by an ensemble of samples, or60

particles, filtered by the likelihood distributions in an iterative manner. An approach that has been more61

widely applied to the archival tagging geolocation problem is the hidden Markov model (HMM). HMMs62

typically require a known, finite number of states, thus the HMM-based geolocation methods operate on63

a horizontal regular rectangular grid. HMM-based geolocation software packages have been developed and64

made available by several research groups (e.g., Pedersen et al. 2008, 2011a; Liu et al. 2017; Braun et al.65

2018). In comparing these two methods, the PF has two key advantages over the HMM-based methods for66

state-space modeling in the context of the geolocation problem. The first is that the PF is better suited for67

filtering both nonlinear and non-Gaussian probability density distributions for the horizontal locations. This68

is particularly advantageous for handling simulations when the fish is in coastal waters near land (Andersen69

et al., 2007) where Gaussian distributions are not suitable. In the PF, confinement to the domain can be70

implemented in a straightforward and robust manner. The second advantage of the PF over HMM-based71
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geolocation is that the PF assumes a continuous state space for particle locations, i.e., modeled particle72

locations are not constrained to a finite set of discrete grid points of an underlying horizontal grid. This73

avoids the need for any interpolation or discretization of the 2-D spatial distributions onto fixed grids as74

required by the HMM approach, which may lead to information loss and render geolocation results dependent75

on the horizontal resolution.76

Previous studies identified that a major drawback of the PF is that it can be computationally intensive77

due to the large number of particles needed for a given simulation (Pedersen et al., 2008; Thygesen et al.,78

2009; Woillez et al., 2016). This is likely the reason why the PF has been infrequently employed in geolocation79

studies despite the clear benefits of the approach. Fortunately, the nature of the PF algorithm enables the80

employment of modern computer hardware acceleration approaches to significantly reduce the computation81

time. The parallelization of the PF algorithm using multiple CPU cores or graphics processing units (GPU)82

to reduce runtime has been studied in the context of other applications (Hendeby et al., 2010; Goodrum83

et al., 2011). A GPU is a computer hardware device that was traditionally used to create images to be84

rendered on a display. Over the last two decades, software tools and algorithms have been developed to85

enable GPUs to be used to accelerate general purpose scientific computation (Vuduc and Choi, 2013). GPUs86

typically contain 100s to 1,000s of processing elements (cores) that can perform simple computations in87

parallel. Parallelization of the particle filtering problem can be implemented straightforwardly by taking88

advantage of the independence of the particles. The lack of interaction between particles allows processing89

elements to handle particles or groups of particles without incurring overhead costs related to exchanging90

information among particles. In contrast, the HMM geolocation approach is less amenable to straightforward91

parallelization and is thus less likely to benefit from modern hardware acceleration approaches.92

The primary objective of this work was to develop an efficient geolocation method based on the PF for93

demersal fishes using archival tagging data. The approach builds from previous work on an HMM-based94

model (HMM Geolocation Toolbox, Liu et al. (2017)) and PF models (Royer et al., 2005; Andersen et al.,95

2007), and improves on some of the algorithmic deficiencies from these prior efforts. The computational96

approach is accelerated using GPUs, enabling significant speedup of the geolocation and rapid execution of the97

model with affordable desktop computing components. The PF geolocation package was developed in Python98
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with CUDA for the accelerated sections and is available at https://github.com/cliu3/pf_geolocation.99

To the best of our knowledge, this work is the first to apply GPU-based parallelization to individual animal100

tracking applications and to introduce an open-source geolocation code for archival tagging based on the PF.101

In the following sections, we describe the specifics of the PF geolocation method and the implementation of102

hardware acceleration. We then present a skill assessment of the method using fixed location mooring tags103

and double-electronically-tagged Atlantic cod from the western Gulf of Maine. Finally we demonstrate an104

application of the approach by presenting geolocations of two cod.105

2 Methods106

2.1 The particle filter algorithm107

Demersal fish geolocation can be described as a nonlinear filtering problem using the following state-space108

system (Royer et al., 2005):109

x(k) = f(x(k−1)),

y(k) = g(x(k)) + et.

(1)110

Here, x(k) is the state variable (geographic horizontal location of the fish) at time t = k∆t where ∆t is the111

observation time step; y(k) is the observation (temperature and depth recorded by the archival tag) at the112

concurrent time; f is a function describing the fish’s horizontal movement; g is the observation function;113

and et is the observation error (tag sensor errors). The goal is to estimate the daily location distribution of114

the tagged fish, i.e., the unknown state series x, which requires estimating a probability distribution series115

p(x(k)|y(0:k)), given the tag-recorded full observation series y(0:k) = {y(0),y(1), ...,y(k)}. This is achieved116

using Bayesian inference:117

p(x(k)|y(0:k−1)) =

∫
p(x(k)|x(k−1))p(x(k−1)|y(0:k−1))dx(k−1),

p(x(k)|y(0:k)) =
p(y(k)|x(k))p(x(k)|y(0:k−1))

p(y(k)|y(0:k−1))
,

(2)118

where the initial distribution p(x(0)|y(0)) is a Gaussian distribution centered at the release location of the119

tagged fish, with a small standard deviation of <50 m. A PF is an algorithm for estimating a state-space120
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model in which a set of discrete samples in state space (referred to as particles) and weights indicating the121

relative importance of the particles are used to approximate the predicted distribution. With respect to the122

geolocation problem, each particle x
(k)
i where i is the particle index represents the possibility of the fish’s123

horizontal location at discrete time k. Each particle has a corresponding weight (w
(k)
i ) which quantifies that124

possibility. Given sufficiently large particle count, N , the particles collectively approximate the continuous125

probability distribution of the fish’s location.126

A likelihood function connects the observations and the corresponding hidden states at each discrete time127

k. Constructing the likelihood function requires a comparison between the environmental data from archival128

tagging and a regional environmental database. We used bottom water temperature, bathymetry, and tidal129

elevation output from the Northeast Coastal Ocean Forecasting System (NECOFS) (Beardsley et al., 2013;130

NECOFS, 2013), which was developed using the Finite-Volume Community Ocean Model (FVCOM) (Chen131

et al., 2006; Cowles et al., 2008). FVCOM utilizes unstructured triangular grids which enable variation in the132

horizontal resolution. In the NECOFS database, the horizontal resolution ranges from 5 km near the open133

boundary to 500 m along the coast and in the vicinity of persistent tidal mixing fronts. Values of bathymetry134

and bottom temperature are located at the vertices of the triangles. Previous skill assessment studies135

compared the NECOFS-estimated bottom temperature with in situ bottom temperature measurements and136

reported strong agreement (Li et al., 2017; Liu et al., 2017). The likelihood function L(x, t) is derived from137

a statistical comparison of environmental data from the tag and from the FVCOM database over a tolerance138

interval following Le Bris et al. (2013); Liu et al. (2017); Zemeckis et al. (2017):139

Ldt(x) =

∫ z+∆z

z−∆z

N
(
z;µz(x), σz(x)

)
dz ×

∫ T+∆T

T−∆T

N
(
T ;µT (x), σT (x)

)
dT, (3)140

where ∆z and ∆T are the tag measurement error for depth and temperature, respectively; z and T are daily141

bottom depth and the associated temperature determined from the tag data; N(µ, σ2) is a normal distribution142

function of mean µ and standard deviation σ, and µz and µT are NECOFS depth and temperature. The143

standard deviations of bathymetry σz(x) and temperature σT (x) were determined using the NECOFS depth144

and temperature values from the neighboring vertices of x on the unstructured grid. Subsequently, likelihood145

values are assigned a value of zero at locations where the possible tidal range interval estimated from NECOFS146
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does not include the range of tidal signal detected from the tag data (see Liu et al. (2017) for details). The147

known recapture location was also incorporated in the likelihood function to influence movement towards this148

location over the last several time steps, by confining the likelihood distribution within a circle of decreasing149

radius Rt around the reported recapture location, and the radius is informed by the remaining time until150

recapture, and the typical swimming speed of the species vm, until the radius equals the reported uncertainty151

radius ru associated with the recapture location:152

Rt = max(ru, 0.5vm(T − t)). (4)153

The likelihood approach is described in detail in Liu et al. (2017) and was implemented in MATLAB in the154

HMM Geolocation toolbox. For the present work, the routines that construct the daily likelihood function155

were converted to Python and are incorporated in the PF geolocation package.156

There are four main steps in the PF geolocation scheme: release, prediction, update, and resampling157

(Fig. 1). In the first step, the particles are initiated at the release location of the fish (Fig. 1a). This occurs158

only at the beginning of the simulation. The remaining three steps are repeated each day of the geolocation159

and are implemented in this study following the basic PF approach of Royer et al. (2005) and Andersen160

et al. (2007) and are described in detail below.161

The prediction step models the horizontal movement of the fish and represents behavior (see Fig. 1b).162

This movement is approximated here by a random walk and was modeled directly for each particle using:163

x̃
(k)
i = x

(k−1)
i +

∆t

δt
R
√

2Dmδt, (5)164

where i is the particle index, ∆t = 24 h is the time interval between observations, δt is the prediction sub-step,165

R is drawn from the standard normal distribution (mean = 0; s.d. = 1) representing the process error, and166

Dm is a diffusion coefficient corresponding to the behavior state m. Approximating fish movement behavior167

via random walk is common and estimated movement can encompass a range of possible mechanisms and168

behaviors, both in geolocation applications (e.g., Sibert et al., 2003; Andersen et al., 2007; Nielsen and169

Sibert, 2007; Pedersen et al., 2008, 2011a; Galuardi and Lam, 2014; Braun et al., 2018) and estimating fish170
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movements in the context of spatial stock structure (e.g., Sibert et al., 1999; Goethel et al., 2011; Schwarz,171

2014). We selected a prediction sub-step of δt = 1 h which prevented particle displacements from exceeding172

the FVCOM mesh resolution along the coast. The values used for the diffusivity coefficients Dm, are species-173

specific and are tied to discrete behavior states. The behavior state is established based on the detection174

and duration of a tidal signal in the tag data on a given day following the approach used in our HMM175

geolocation package (Liu et al., 2017; Zemeckis et al., 2017) based on the premise that a tidal signal is more176

discernible in low activity fish when they are sedentary on the bottom, and the diffusivity coefficient values177

were determined considering the typical swimming speed of the species (e.g., Fernö et al., 2011). For Atlantic178

cod, we allowed the behavior state m to be sedentary (low activity, 13 h tidal signal, Dm = 1 km2 day−1),179

intermediate (moderate activity, 5 h tidal signal, Dm = 5 km2 day−1), or migratory (high activity, no tidal180

signal, Dm = 10 km2 day−1).181

A rigorous boundary treatment was implemented to conserve the number of particles in the simulation by182

preventing particles from crossing onto land. To determine if a particle moved onto land during a prediction183

sub-step (δt), a nearest-neighbor search was performed to find the two FVCOM mesh vertices nearest the184

new particle location. A particle that is not contained within any of the triangular cells that are connected185

to these two vertices was considered to have exited the domain and is subsequently reset to its prior position186

within the domain at the previous prediction sub-step (Fig. 2a). Conversely, a particle that is inside any187

of the triangular cells that are connected to the two vertices nearest the particle was considered to be in188

the domain and the new particle location is retained (Fig. 2b). This boundary treatment approximates a189

reflecting boundary condition, which is appropriate for modeling fish movements (Sibert et al., 1999). In190

the serial CPU version of the code, the nearest neighbor search is performed using a k-d tree algorithm191

(Maneewongvatana and Mount, 1999) from the SciPy Python package (Jones et al., 2001). The k-d tree is192

an efficient search algorithm that is optimized for the CPU. For the present work it is considerably faster193

than a brute-force nearest neighbor search, providing a factor of 35 speedup in benchmark testing.194

In the update step, particle weights are first drawn from the likelihood function L(x, t) evaluated at195
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particle locations x
(k)
i and time t = k∆t:196

w̃
(k)
i = L(x

(k)
i , t), (6)197

The particle likelihood values are computed using data that is stored discretely on the horizontal unstructured198

grid of the NECOFS database. Execution of eq. (6) requires interpolating L(x, t) onto each particle location.199

For this work we use a routine for bilinear interpolation on triangular grids provided in the Python package200

Matplotlib (Hunter, 2007). The particle weights are then normalized into the range 0 ≤ w(k)
i ≤ 1201

w
(k)
i = w̃

(k)
i /

∑
i

w̃
(k)
(k), (7)202

to give the resulting posterior probability distribution at time t (Fig. 1c).203

In the last step of the daily iteration, particles are resampled according to the particle weights (w
(k)
i ),204

such that particles with low weights are removed and replaced by those with higher weights and particle205

numbers are reordered in the new set of particles so that they are proportional to their weights (Fig. 1d).206

The resampling is implemented following the approach of Labbe (2016) and is demonstrated in Fig. 3 for a207

simple simulation with N = 10 particles. In the first step, a cumulative density function (cdf; blue line) is208

constructed using the normalized weights (w
(k)
j ). The cdf is then divided into N equal divisions where N is209

the number of particles and a random offset is used to displace these divisions (Fig. 3, green arrows). The210

N particles identified by the green arrows in the cdf curve are then selected for resampling. Note that the211

particle multiplicity may be greater than one. For the cdf and divisions shown in Fig. 3, the selected set212

of particles is I = {0, 0, 1, 3, 4, 4, 6, 8, 8, 9}. The particles with multiplicity greater than unity {0, 4, 8} are213

particles with greater weight. The particles with lower weights {2, 5, 7} will be re-initialized at the locations214

of particles {0, 4, 8}, respectively. The particle position histories are transferred using the indexing array I215

so that particles initialized to a new location carry the location time series of the particle in that location216

at time t:217

x
(j)
i = x̃

(j)
Ii

j = 0...k. (8)218
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To conduct this step we used the systematic resampling function from the package FilterPy (Labbe, 2016)219

to generate an index array I to the particles that have been chosen for resampling such that the numbers of220

the indices to the particles before resampling equals these particles’ weights:221

P (Ii = j) = wj . (9)222

After the model has been integrated from release to recapture, the estimated most probable track (MPT)223

is determined. The MPT represents the track of the particle with the highest overall importance score,224

defined as the product of the weight at the last time step and the sum of the weights from the first to the225

second to last time steps. The index of the particle associated with the MPT is given by226

IMPT = arg max
i

(w
(T )
i

T−1∑
k=0

w
(k)
i ) (10)227

where T is the last time step of the filter. In addition to the MPT, daily posterior probability distributions228

of the fish are reconstructed from the horizontal distribution of particles using non-parametric kernel density229

estimation. These may also be interpreted as the uncertainty distribution around the most probable track230

and may be useful in interpreting the results.231

A summary of the work flow in the present PF geolocation algorithm is provided in the table below.232
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1. Initialize the particles by placing them at the release location of the tagged fish (Fig. 1a).

2. FOR each day the fish is at large, do steps (a)–(c):

(a) Predict: move the particles horizontally using a random walk and ensure that particles do not

exit the domain (Fig. 1b).

(b) Update: weight the particles by interpolating the observation likelihood function to the particles,

and normalize the weights (Fig. 1c).

(c) Resample: remove particles with lower weight and replace them by those with higher weight

(Fig. 1d).

3. Construct the overall probability distribution.

4. Determine the most probable track (MPT)

233

2.2 GPU parallelization234

The PF geolocation algorithm was first implemented as serial CPU code. To achieve acceleration of the ge-235

olocation computation, the serial CPU code was parallelized by taking advantage of the significant computing236

capabilities of modern GPUs, specifically those manufactured by NVIDIA. For this we used the PyCUDA237

package (Klöckner et al., 2012), a Python library that provides access to the NVIDIA CUDA parallel com-238

putation platform (Nickolls et al., 2008). In the CUDA platform, memory spaces on the host (CPU) and239

the device (GPU) are handled separately, and data must be available in the device memory for the GPU to240

perform computations. Transfers of data between the host and the device are explicitly programmed and241

must be carefully planned because they can incur a significant overhead. Functions that are submitted to242

the GPU for parallel execution are referred to as kernels and are written in CUDA C, a variant of the C243

programming language.244

Here we describe the details of the GPU-accelerated version of the PF geolocation, hereby referred to245

as the GPU code. We refer explicitly to the three primary steps of the PF algorithm: prediction, update,246

and resample (Fig. 4). During the initial benchmarking and profiling of the serial CPU code, the nearest247
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neighbor search was identified to be the most computationally intensive component. Therefore, the GPU248

implementation focuses primarily on the parallelization of the prediction step. In the GPU code, the x and249

y arrays representing the horizontal coordinates of the particles are first initiated on the host at the reported250

release location of the fish. These arrays are then transferred to the global memory on the device. In the251

prediction step, random numbers required for the random walk are generated on the device using an intrinsic252

function provided by PyCUDA and the particle positions are updated on the device. To apply the boundary253

conditions, a brute force nearest neighbor search is used. This required two separate kernels, one to determine254

the mesh elements surrounding the two mesh vertices nearest to each particle and a second to determine if255

the particle resides within any of these elements. In the update step, the x and y arrays are transferred from256

the host to the device. The likelihood distribution L is then interpolated onto the particle positions (x, y) on257

the host to compute particle weights. These interpolated weights are subsequently transferred to the device.258

In the resampling step, the index array I is generated on the host. A kernel was written to re-arrange the259

x and y arrays according to I on the GPU. Arrays x and y are subsequently transferred from the device to260

the host and stored in an array that is archived to an external data file.261

3 Validation and Performance Results262

3.1 Tag Data and Skill Metrics263

Following Liu et al. (2017), two types of tag data were used for assessing the skill of the PF geolocation264

method. First, bottom-mooring tags which challenge the model to maintain a fixed position over time. A265

total of 14 Star-ODDI DSTs were moored on the bottom of different known fixed locations in Massachusetts266

Bay, Ipswich Bay, and Jeffreys Ledge between 2010 and 2015 (Fig. 5). The second set of tag data is derived267

from double-tagged Atlantic cod. During a study conducted from 2010 to 2012, individual Atlantic cod were268

tagged with both Star-ODDI milli-L DSTs and Vemco V16P-6H acoustic transmitters in the Spring Cod269

Conservation Zone (SCCZ; Fig. 5), located in northern Massachusetts Bay in the western Gulf of Maine,270

USA (See Dean et al. (2014); Zemeckis et al. (2014, 2017) for full tagging methods). Importantly, ten double-271

tagged fish were recaptured and the acoustic transmitters carried by these fish provide an independent set of272
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location estimates accurate to <10 m in the SCCZ and <1 km otherwise, when the tagged fish were detected273

within the receiving range of acoustic receiver arrays. Since the position of the animal is accurately known at274

these discrete locations while at-liberty, these data can be directly incorporated in the skill assessment of the275

geolocation method. Three error metrics were used to evaluate the model skill. The first metric (E1) is the276

distance between known locations and the location of the nearest modeled particle on the day of detection.277

The second metric (E2) is the distance between known locations and the position of the fish along the MPT278

on the day of detection. The third metric (E3) is whether the known location falls within the 95% credible279

area of the same-day probability distribution, reconstructed from all particles. The 95% credible area is280

defined such that the sum of the probability within the area is 95% of the total probability.281

3.2 Sensitivity to the number of particles282

A study was carried out to examine the influence of the particle count N on the geolocation. Seven sets of283

geolocation tests were conducted using particle numbers N ranging from 2× 103 to 400× 103. For each N ,284

an ensemble of 30 runs were made with identical parameters. Both the E1 and E2 metrics were computed285

for each model run and used to evaluate convergence of the solution with N . The mean value of E1 over286

the ensemble decreases rapidly with increasing particle count to around 200× 103 particles and then begins287

to asymptote towards a fixed value with further increases in particle count (Fig. 6a). Statistics for the root288

mean square (RMS) of the E2 metric were also evaluated. The median value of the RMS of the E2 does not289

depend on particle count (Fig. 6b). However, the variation of the RMS of the E2 decreases with particle290

count up to around N = 200× 103 particles and remains fairly static for N ≥ 200× 103. This indicates that291

the geolocation reaches a particle-converged solution at N ∼ 200× 103 particles. Results from both the E1292

and E2 metrics indicate that using N = 200×103 particles is an optimal choice for both accuracy in particle293

filtering and computational load. This particle number was thus used in all experiments.294

3.3 Skill Assessment295

A skill assessment based on the E2 metric (error in the MPT) and E3 (whether known locations fall within296

95% credible areas) was conducted using tags from 14 mooring and 10 double-tagged cod representing 984297
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d of data. The MPT estimations of the PF geolocation method for the mooring DST locations had an RMS298

error of 14.95 km, and the error range was 0.01–27.53 km. The median MPT error for all mooring tags was299

9.71 km (Table 1), and 61.9% of the known locations fell within the 95% credible areas of the same-day300

posterior probability distributions. For the 10 double-tagged cod with high-resolution positions determined301

by acoustic telemetry detections, the RMS error of the same-day MPT estimation was 18.19 km and the302

median error was 6.0 km. The error range was 0.29–46.77 km (Table 1). All known locations fell within the303

95% credible areas of the same-day posterior probability distributions. These results indicate that the MPT304

determined using PF geolocation method was able to provide accurate location estimates typically on the305

horizontal scale of <18 km.306

3.4 Benchmarking and profiling307

Wall clock time for the PF geolocation code executed on serial CPU and GPU was evaluated on a high-308

performance computing cluster. Each node in the cluster was equipped with an Intel Core i7-950 CPU309

and an NVIDIA GeForce GTX 560 Ti GPU. A range of problem sizes from 12,500 to 200,000 particles310

was tested on data from a tagged cod with 56 d at liberty. Using the Python profiling module “cProfile”,311

the total runtime was decomposed into fractions spent in the prediction, update, and resampling steps.312

Profiling demonstrated that the majority of the computational time (>97% for all serial CPU cases, >52%313

for all GPU cases) was spent in the prediction step (Fig. 7a). The relationship between runtime and particle314

number is approximately linear for both the serial CPU and GPU implementations, and the speedup that315

the GPU implementation provides over the serial CPU approach increases with increasing particle count316

N , ranging from a factor of 19.0 to 48.9 (Fig. 7b). Furthermore, in both CPU and GPU implementations,317

time spent in prediction and resampling steps increases as N increases, whereas the time spent in other318

parts is nearly constant regardless of particle counts, resulting in decreasing portion of total time (Fig. 7a).319

Thus, accelerating the prediction step through GPU parallelization effectively reduced overall runtime of PF320

geolocation.321

A performance study of the PF geolocation method was also conducted on a wide range of NVIDIA GPUs.322

The set included products from four generations of hardware microarchitectures (Fermi, Kepler, Maxwell,323
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and Pascal) and both consumer (GeForce) and high-performance computing (Tesla) lines (Table 2) and324

represents a factor of 10 in the range of theoretical single-precision performance. These tests were conducted325

using 200,000 particles and tag data from the same Atlantic cod used in the CPU-GPU comparison study.326

CUDA Toolkit version 9.1 was used to compile kernels for all tests with the exception of those run on the327

legacy Fermi generation GPUs which are not supported beyond CUDA 8.0. CUDA 9.1 contains optimizations328

in routines used by the PF package which enable a 10% increase in performance over CUDA 8.0. Throughput,329

measured as the number of days at liberty that can be geolocated in an hour of compute time using 200,000330

particles, was used as the performance metric. The throughput on the serial CPU code was 6.4 d/h. The331

results suggest that performance of the model generally correlates with the theoretical performance of the332

hardware (GFLOPS) and that throughput is enhanced on the newer architectures with greater memory333

bandwidth. The greatest performance was achieved on the NVIDIA Volta V100, a powerful GPU aimed at334

deep learning applications with an approximate price of $10,000 USD. Such high end hardware, however, is335

not necessary. The GeForce GTX 1050 is capable of geolocating 483 d of fish movement in under an hour336

of wall clock time. The 1050 is commonly specified in laptops and entry-level desktops and sells for ∼$100337

USD, considerably less than the cost of an archival storage tag. In summary, this study indicates that the338

GPU enables routine PF geolocations to be performed on affordable consumer-grade computers.339

3.5 Geolocation of Atlantic cod in western Gulf of Maine340

To demonstrate the capabilities of the PF geolocation package, we applied it to the geolocation of two341

Atlantic cod. For each fish, the estimated MPT and daily posterior probability distributions for each day342

the fish was at liberty are shown in Figs. 8 and 9. The reconstructed depth and temperature time series343

from the MPT are generally in good agreement with the raw tag data (Fig. 10).344

Cod #13 was released on 11 May 2010 and recaptured on 21 Nov. 2010. During its 194 d at large, the345

tidal fitting algorithm identified 151 d as low activity, 32 d as moderate activity, and 11 d as high activity.346

The cod migrated southward from the tagging location and remained in the region between Stellwagen Bank347

and Cape Cod Bay for a prolonged period of time (approximately from day 20 to 120) before heading north348

to the location of its recapture (Fig. 8). The prolonged period of sedentary behavior was also evident in349
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the depth time series data recorded by the DST (Fig. 10a). The considerable time spent on Stellwagen350

Bank, away from the release and recapture locations represents information that would not be possible to351

determine from conventional tagging which can only inform release and recapture locations..352

Cod #17 was released on 18 June 2010 and recaptured on 29 Aug. 2010 (72 d at large); 26, 33, and 13 days353

were classified as low, moderate, and high activity days, respectively. As the fish migrated northward after354

day 30 towards the recapture location, the posterior probability distribution exhibited a bimodal pattern,355

suggesting two plausible trajectories: one that extended directly northward and the other that took a more356

circuitous route to the east around the southern portion of Jeffreys Ledge (Fig. 9). In an ensemble of model357

runs, MPTs along both of these trajectories were observed, although the circuitous route was the dominant358

solution. The MPT from the particular model run shown in Fig. 9 follows this circuitous second trajectory.359

4 Discussion360

The open source PF geolocation package presented in this work was developed with the goal of making361

geolocation analyses more accessible to fisheries researchers who conduct archival tagging studies on demersal362

fishes. The kernel of the solver represents an implementation of the basic filter outlined in Andersen et al.363

(2007) combined with the likelihood function approach developed in our prior geolocation work (Liu et al.,364

2017). The implementation of a rigorous boundary treatment scheme and GPU parallelization enables this365

software package to estimate movement in regions with complex coastline geometry and provides rapid366

solutions using consumer grade computer hardware readily available to researchers.367

Results of MPT errors from PF geolocation of both mooring and double-tagging validation tests were368

similar to those obtained using the HMM geolocation toolbox (Liu et al., 2017): RMS error for mooring tags369

were 14.95 km with PF and 11.07 km with HMM, while for double-tagged cod errors were 18.19 km with PF370

and 21.87 km with HMM. The PF geolocation exhibited slightly better overall skill in the geolocations of371

double-tagged fish, but with shorter runtime. For six out of ten double-tagged fish, the PF geolocation code372

outperformed the HMM geolocation toolbox in median geolocation error by 0.45–34.8 km. These errors were373

not found to decrease substantially with further increases in the number of particles in the PF or refinement374

of the mesh in HMM. This indicates that for this specific combination of species, tag type, and the given375
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environmental database, we may be at the limit of estimation accuracy that can be provided by state-space376

methods. The PF geolocation performances are similar to or better than other geolocation efforts. For377

example, Hunter et al. (2003) and Thorsteinsson et al. (2012) used mooring tags fixed at known locations to378

validate their tidal-based method and reported average error of 15.7 ± 3.5 km and 18.91 km, respectively.379

Double-tagging studies of sharks (Teo et al., 2004; Winship et al., 2012) found errors >0.5°(approximately380

55 km). A recent HMM-based geolocation study of shark species reported median errors of 66–150 km381

compared to known locations with accuracy of <10 km (Braun et al., 2018). Precision obtained with this382

methods is the among highest documented in tracking marine animals.383

The GPU implementation of the PF geolocation package achieves up to 75× the speed of the serial384

CPU implementation on the affordable, consumer-grade NVIDIA GTX 1050, and up to 266× on a high-385

end Tesla V100 GPU. The runtime of PF geolocation of a 210 d track is well under an hour running on a386

typical consumer grade NVIDIA GPU with minimal specifications. This acceleration factor may be even387

higher if the suboptimal brute force nearest neighbor search were used in the CPU implementation rather388

than the optimized k-d tree algorithm. The significant acceleration achieved through GPU parallelization389

eliminates the requirements for costly specialized hardware. For comparison with the computation time390

of other geolocation applications on consumer-grade hardware, Pedersen et al. (2011b) reported that the391

finite-element geolocation method they developed takes on the order of days to estimate a 294 d track on a392

1.4 GHz laptop and the recently published HMM-based geolocation package HMMoce (Braun et al., 2018)393

written in R takes nearly a full day to run a 134 d track on a quad-core personal computer. Parts of394

the current PF geolocation package may be further parallelized, but doing so is not likely to result in any395

significant improvement in performance. For example, in the current method, the prediction step is the396

most computationally intensive. Brute-force nearest neighbor search represents an embarrassingly parallel397

algorithm and the GPU implementation is much faster than the optimized k-d tree on serial CPU. The k-d398

tree is an optimized algorithm for serial execution that may provide 35× speedup over serial brute-force, but399

it is not suitable for parallel execution (Hering, 2013). Implementing this k-d tree on GPU would require a400

considerable undertaking with no guarantee of performance gain over the brute-force algorithm. As another401

example, the PF resampling in the current method is not parallelized. While parallelized PF resampling402
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algorithms have been proposed (McAlinn et al., 2016), the benefit to the overall performance would be403

nominal, because resampling accounts for only <1.2% of the total runtime, and Amdahl’s Law (Amdahl,404

1967) predicts a maximum speedup of only S = 1/
(
1− 1.2

100

)
≈ 1.2%.405

Most approaches to marine animal geolocation do not place emphasis on the boundary treatment. Sim-406

ple boundary schemes, such as masking out values on grid points representing land, may be sufficient for407

estimating large-scale movements of pelagic animals in which case the influence of land boundaries may408

be negligible, but these simple schemes cannot adequately handle the estimations of movements of coastal409

species in regions with complex land boundaries. In the present work, we use the unstructured triangular410

mesh of NECOFS database which provides significantly better resolution of the coastline compared with411

structured grid approaches (Chen et al., 2006). This enables us to implement a robust reflection boundary412

scheme in the PF geolocation package that effectively prevents particles from moving onto or crossing over413

land and models the fish movements more realistically. As an alternative boundary treatment, particles414

that move out of the domain can be eliminated. This is equivalent to an absorbing boundary condition415

which is not appropriate for the land-ocean boundary in modeling marine animal movements (Sibert et al.,416

1999). The PF geolocation package can potentially be adapted to work with other oceanographic databases417

that provide bathymetry and bottom temperature data for other regions. Since the boundary treatment in418

the PF geolocation package is dependent on the grid of the FVCOM bottom temperature data, using data419

from other databases requires re-implementation of the boundary treatment scheme. Bottom temperature420

data from many of the oceanographic databases are based on popular ocean models such as ROMS or HY-421

COM that use curvilinear grids, which would make the particle-based boundary treatment scheme easier to422

implement than the triangular grid of FVCOM (e.g., Sumner et al., 2009).423

The PF geolocation results include the daily posterior probability distributions and the MPT. Due to the424

stochastic nature of the simulation, two runs with identical parameters will not produce identical results.425

The particle number sensitivity experiments indicate that using larger particle numbers will decrease the426

variability of the outcome (MPT), but there is a limit beyond which further increase in the particle count427

will not provide further convergence of the MPT over an ensemble of runs. As an alternative point estimate428

metric, maximum a posteriori (MAP) (Saha et al., 2009) may provide less stochastic location track estimates,429
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but the high computational complexity is likely prohibitive, especially when the particle number is large. In430

addition, being a single sample of all the particles, the MPT ensures that the movement model is strictly431

followed, making MPT a more plausible track than one estimated by the MAP. It should be noted that, as432

the daily posterior distributions are largely consistent across an ensemble of runs using a fixed model setup,433

any point estimate metric including the MPT should not be the sole information to be considered when434

interpreting and understanding the movements of the tagged individual.435

The PF geolocation method uses the random walk to model individual movements, because the random436

walk and the equivalent Fokker-Planck diffusion model are widely accepted as appropriate for the spatial437

and temporal scales corresponding to tagging studies of fishes (e.g., Sibert et al., 1999; Andersen et al.,438

2007; Pedersen et al., 2008; Goethel et al., 2011), and for animal movement modeling using the particle filter439

(e.g., Andersen et al., 2007; Tremblay et al., 2009; Dowd and Joy, 2011; Rakhimberdiev et al., 2015). The440

random walk was also the choice of the movement model in many popular geolocation software packages441

for marine animals (e.g., hmmgeolocation: Pedersen et al. 2008; Wildlife Computers GPE3: based on442

Pedersen et al. 2011a; TrackIt: Lam et al. 2010; HMMoce: Braun et al. 2018). Alternative movement443

models, such as Lévy flight, have been shown to have a negligible effect in geolocation applications compared444

to the random walk (Thygesen and Nielsen, 2009). Furthermore, the random walk model is effectively445

being used as a prior on possible moves and the estimated movement is being updated by the data very446

frequently, therefore the performance may be less sensitive to the choice of the movement model. Given the447

reasonably good performance indicated by the validation results, implementing a different movement model448

may unnecessarily increase the complexity of the geolocation method. In geolocating the double-tagged cod,449

the diffusion coefficient was estimated from the measured modal swimming speed of Atlantic cod (0.1–0.4450

body lengths per second, Fernö et al. 2011). Given that the lengths of the double-tagged cod are in the451

range of 70–110 cm, the appropriate diffusion coefficient was estimated to be 1 km2 day−1 for the low activity452

level, considering a small, slow fish (70 cm, 0.05 body lengths per second) and 10 km2 day−1 for the high453

activity level, considering a larger, faster fish (110 cm, 0.1 body lengths per second), using the equation454

D = ρv2/2, where v is the swimming speed and ρ = 6 h is an assumed decorrelation time (Pedersen, 2007).455

The PF geolocation results were found to be sensitive to values selected for the diffusion coefficients. We456
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performed the double-tagged cod validation with the increased diffusion coefficient values for low, moderate,457

and high activity levels of 5, 25, and 50 km2 day−1, and the overall median error increased 23 km. The458

PF geolocation method may be further improved to be capable of estimating unknown parameters, such459

as the diffusion coefficient, based on a maximum likelihood approach. For example, Andersen et al. (2007)460

proposed using Random Walk Metropolis-Hastings combined with the PF to approximate the probability461

distributions of the unknown parameters. Parameter estimation for the PF is an active field of research (see462

e.g., Kantas et al., 2015), and developing the GPU implementation of the optimal approach is a promising463

future direction.464

The main contribution of this work is the successful development of a GPU-accelerated open-source ge-465

olocation package using archival tagging data that can be executed on affordable computers. The source code466

is available on a GitHub repository at https://github.com/cliu3/pf_geolocation, where instructions for467

users and an example case that can be executed are also available. Researchers can further adapt the source468

code for applications to other species and regions.469
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Figure 1: Demonstration of the steps of the particle filter: release, prediction, update, and resample. This
is an example of cod in the Gulf of Maine. Color indicates values of the daily likelihood distribution Ldt.
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Figure 2: Boundary treatment of the particles during the prediction step. After the tentative movement
established by the horizontal random walk (black particles), each particle is then classified as being outside
or inside the domain. (a) A particle not found in all of the triangular cells (red triangles) surrounding the
two nearest mesh vertices (blue dots) is characterized as being outside of the domain, and is subsequently
restored to the location where it resided prior to the step. (b) A particle found in any of the triangular cells
(green triangles) surrounding the two nearest mesh vertices (blue circles) is characterized as being inside of
the domain and is allowed to remain in the new location.
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Figure 3: Schematic plot of the resampling process for N = 10 particles. The blue line is the cumulative
density function (cdf), and the vertical axis is the particle index. Green arrows represent the equal divisions
to determine which particles are sampled.
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Figure 4: Flow chart of the parallel particle filter geolocation on graphics processing units (GPUs).
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Figure 5: Map of western Gulf of Maine showing the Cape Cod Bay, Stellwagen Bank, Jeffreys Ledge, and
the Spring Cod Conservation Zone (SCCZ) as the red rectangle. Selective isobaths of 50 m, 100 m, and 200
m are also shown as lines of decreasing shades of gray with greater depth.
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Figure 6: (a) Error bar plot of the distance between the nearest modeled particle and the associated acoustic
location, showing the mean values (solid dots) and range (whiskers). (b) Box plot of RMS Error of the most
probable track (MPT) in relation to the number of particles used in a particle filter geolocation run, over
30 model runs for each particle number, showing median values (thick black horizontal line), 25% and 75%
percentile values (box outline), outliers (hollow circle), and the highest and lowest value within 1.5 times the
interquartile range (whiskers).
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Figure 7: Comparison of the time percentage for each step (a) for the PF geolocation between serial CPU
(left bars) and GPU (right bars) and total run time and speed-up factors (b).
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Figure 8: Progression of the daily posterior distribution (color rendering) and the most probable track
(MPT, black line) for cod #13. Black cross: release location, black triangle: reported recapture location,
red triangle: simulated recapture location.
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Figure 9: Progression of the daily posterior distribution (color rendering) and the most probable track
(MPT, black line) for cod #17. Black cross: release location, black triangle: reported recapture location,
red triangle: simulated recapture location.
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Figure 10: Comparison of the raw depth and temperature time series data recorded by the data storage tags
(DSTs; blue line) and the daily depth and temperature data reconstructed from environmental database
along the most probable track (MPT; orange line) for (a) cod #13 and (b) #17.
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Table 1: Skills of the most probable track (MPT) of the PF geolocation method for mooring and double-
tagging

Data Source Mooring Double-tagged fish

# tag deployments 14 10
# geolocation days with known locations 762 222
E2 Error range (km) 0.01–27.53 0.29–46.77
E2 RMS (km) 14.95 18.19
E2 Median (km) 9.71 6.0
E2 Mean ± S.D. (km) 12.03±8.87 12.47±13.28
E3 %days within 95% credible area 61.9 100
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Table 2: Hardware specifications and PF-Throughput in geolocation-days per wall clock hour (d/h) on ten
GPUs.

NVIDIA GPU Model Architecture
Generation

Compute
Cores

Base
Clock
(MHz)

Memory
Band-
width
(GB/s)

Single
Precision
GFLOPS

PF-Throughput
(d/h)

Tesla V100 Volta 5120 1455 900.0 14899.0 1705
Titan X Pascal 3584 1417 480.0 10157.0 1090
Tesla M60 Maxwell 4096 899 320.0 7365.0 877
Tesla K80 Kepler 4992 560 480.0 5591.0 657
GeForce GTX 1050 Ti Pascal 768 1290 112.1 1981.4 638
GeForce GTX 1050 Pascal 640 1354 112.0 1733.1 483
Tesla K40c Kepler 2880 745 288.0 4291.0 413
GeForce GTX 750 Ti Maxwell 640 1020 86.4 1305.6 391
GeForce GTX 560 Ti Fermi 384 1645 128.0 1263.4 315
Tesla C2050 Fermi 448 1150 144.0 1030.4 228
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